Titre : | Optimization of photovoltaic power systems : modelization, simulation and control / |
Titre original: | Optimisation des systèmes d'alimentation photovoltaïque |
Auteurs : | Djamila Rekioua ; Ernest Matagne |
Type de document : | Monographie imprimée |
Editeur : | London : Springer, 2012 |
ISBN/ISSN/EAN : | 978-1-4471-2348-4 |
Format : | xii, 283 p. / ill. (some col.) / 24 cm |
Catégories : |
[Agneaux] Photovoltaic power systems > Mathematical models. [Agneaux] Photovoltaikanlage. |
Résumé : |
Photovoltaic generation is one of the cleanest forms of energy conversion available. One of the advantages offered by solar energy is its potential to provide sustainable electricity in areas not served by the conventional power grid. Optimisation of Photovoltaic Power Systems details explicit modelling, control and optimisation of the most popular stand-alone applications such as pumping, power supply, and desalination. Each section is concluded by an example using the MATLAB® and Simulink® packages to help the reader understand and evaluate the performance of different photovoltaic systems. Optimisation of Photovoltaic Power Systems provides engineers, graduate and postgraduate students with the means to understand, assess and develop their own photovoltaic systems. As such, it is an essential tool for all those wishing to specialise in stand-alone photovoltaic systems. Optimisation of Photovoltaic Power Systems aims to enable all researchers in the field of electrical engineering to thoroughly understand the concepts of photovoltaic systems; find solutions to their problems; and choose the appropriate mathematical model for optimising photovoltaic energy. |
Sommaire : |
1 Photovoltaic Applications Overview . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Photovoltaic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.1 Irradiance and Solar Radiation . . . . . . . . . . . . . . . . . . 3 1.1.2 Photovoltaic Cells Technologies . . . . . . . . . . . . . . . . . 4 1.1.3 Photovoltaic Cells and Photovoltaic Modules . . . . . . . . 6 1.2 Introduction to PV Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.2.1 Stand Alone PV Systems . . . . . . . . . . . . . . . . . . . . . . 13 1.2.2 Grid-Connected PV Systems . . . . . . . . . . . . . . . . . . . . 17 1.3 System Pre-Sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.3.1 Determination of Load Profile. . . . . . . . . . . . . . . . . . . 18 1.3.2 Analysis of Solar Radiation . . . . . . . . . . . . . . . . . . . . 19 1.3.3 Calculation of Photovoltaic Energy . . . . . . . . . . . . . . . 19 1.3.4 Size of PV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.3.5 Size of Battery Bank . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.3.6 Inverter Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.3.7 Sizing of DC Wiring . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.3.8 Sizing of AC Cables . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.3.9 Sizing of DC Fuses . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.4 Feasibility of Photovoltaic Systems . . . . . . . . . . . . . . . . . . . . . 26 1.4.1 Estimating the Size of a Photovoltaic System . . . . . . . . 27 1.4.2 Estimating of PV System Costs. . . . . . . . . . . . . . . . . . 27 1.5 Maintenance of Photovoltaic Systems . . . . . . . . . . . . . . . . . . . 28 1.5.1 Panels Cleaning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.5.2 Verification of Supports . . . . . . . . . . . . . . . . . . . . . . . 29 1.5.3 Regular Maintenance of Batteries . . . . . . . . . . . . . . . . 29 1.5.4 Inverters Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2 Modeling of Solar Irradiance and Cells . . . . . . . . . . . . . . . . . . . . 31 2.1 Irradiance Modeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.1.1 Principles and First Simplifying Assumption. . . . . . . . . 34 ix 2.1.2 Sky and Ground Radiance Modeling . . . . . . . . . . . . . . 38 2.1.3 Use of an Atmospheric Model. . . . . . . . . . . . . . . . . . . 41 2.2 PV Array Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.2.1 Ideal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.2.2 Two Diode PV Array Models . . . . . . . . . . . . . . . . . . . 80 2.2.3 Power Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 2.2.4 General Remarks on PV Arrays Models . . . . . . . . . . . . 85 3 Power Electronics Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 3.1 The Origin of Power Losses in Power Electronic Converters . . . 91 3.1.1 Power Electronics Fundamentals . . . . . . . . . . . . . . . . . 91 3.1.2 Methods of Elementary Losses Modeling . . . . . . . . . . . 92 3.1.3 The Most Used Power Semiconductors . . . . . . . . . . . . 94 3.1.4 Particularities of the Semiconductors From the Losses Point of View . . . . . . . . . . . . . . . . . . . . . . 95 3.2 The Structures of Converters and the Influence on Their Efficiencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 3.2.1 Direct Connection to a DC Bus. . . . . . . . . . . . . . . . . . 96 3.2.2 DC/DC Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . 96 3.2.3 DC/AC Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . 99 3.3 Empirical Modeling of the Converters . . . . . . . . . . . . . . . . . . . 105 3.3.1 Case of Constant Voltage . . . . . . . . . . . . . . . . . . . . . . 105 3.3.2 Case of Variable Input Voltage . . . . . . . . . . . . . . . . . . 106 3.3.3 Note on Experimental Losses Determination. . . . . . . . . 107 3.4 Circuit Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 3.5 Note on the Nominal Power Choice. . . . . . . . . . . . . . . . . . . . . 108 3.6 Multi-Agent Systems for the Control of Distributed Energy Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 3.6.1 Multi-Agent Systems . . . . . . . . . . . . . . . . . . . . . . . . . 109 3.6.2 Multi-Agent System in Power Systems. . . . . . . . . . . . . 110 3.6.3 Distributed Power Systems . . . . . . . . . . . . . . . . . . . . . 110 3.6.4 Control Systems for Inverters . . . . . . . . . . . . . . . . . . . 111 3.6.5 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 4 Optimized Use of PV Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.1 Introduction to Optimization Algorithms . . . . . . . . . . . . . . . . . 114 4.2 Maximum Power Point Tracker Algorithms . . . . . . . . . . . . . . . 115 4.2.1 Perturb and Observe Technique. . . . . . . . . . . . . . . . . . 118 4.2.2 Modified P&O Method . . . . . . . . . . . . . . . . . . . . . . . 119 4.2.3 Incremental Conductance Technique . . . . . . . . . . . . . . 120 4.2.4 Modified INC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 4.2.5 Hill Climbing Control . . . . . . . . . . . . . . . . . . . . . . . . 124 x Contents 4.2.6 MPPT Controls Based on Relations of Proportionality . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 4.2.7 Curve-Fitting Method. . . . . . . . . . . . . . . . . . . . . . . . . 128 4.2.8 Look-Up Table Method . . . . . . . . . . . . . . . . . . . . . . . 129 4.2.9 Sliding Mode Control. . . . . . . . . . . . . . . . . . . . . . . . . 129 4.2.10 Method of Parasitic Capacitance Model . . . . . . . . . . . . 134 4.2.11 Fuzzy Logic Technique . . . . . . . . . . . . . . . . . . . . . . . 134 4.2.12 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . 139 4.2.13 Neuro-Fuzzy Method . . . . . . . . . . . . . . . . . . . . . . . . . 141 4.2.14 Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 144 4.3 Efficiency of a MPPT Algorithm. . . . . . . . . . . . . . . . . . . . . . . 145 4.4 Comparison of Different Algorithms . . . . . . . . . . . . . . . . . . . . 145 5 Modeling of Storage Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 5.1 Description of Different Storage Systems . . . . . . . . . . . . . . . . . 150 5.1.1 Battery Bank Systems . . . . . . . . . . . . . . . . . . . . . . . . 150 5.1.2 Battery Bank Model. . . . . . . . . . . . . . . . . . . . . . . . . . 158 5.1.3 Equivalent Circuit Battery Models. . . . . . . . . . . . . . . . 162 5.1.4 Traction Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 5.1.5 Application: CIEMAT Model . . . . . . . . . . . . . . . . . . . 170 6 Photovoltaic Pumping Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 6.1 PV Pumping Systems Based on DC Machines . . . . . . . . . . . . . 182 6.1.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 6.1.2 System Modeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 6.1.3 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 6.2 PV Pumping Systems Based on AC Motor . . . . . . . . . . . . . . . . 189 6.2.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 6.2.2 System Modeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 6.2.3 Scalar Control of the PV System. . . . . . . . . . . . . . . . . 199 6.2.4 Vector Control of the PV System Based on Induction Machine . . . . . . . . . . . . . . . . . . . . . . . . 203 6.2.5 DTC Control of the PV System. . . . . . . . . . . . . . . . . . 204 6.3 Maximum Power Point Tracking for Solar Water Pump. . . . . . . 210 6.3.1 With DC Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 6.3.2 With AC Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 6.4 Economic Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 6.4.1 Estimation of the Water Pumping Energy Demand . . . . 212 6.4.2 Life Cycle Cost (LCC) Calculations . . . . . . . . . . . . . . 213 6.4.3 Environmental Aspects of PV Power Systems. . . . . . . . 216 7 Hybrid Photovoltaic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 7.1 Advantages and Disadvantages of a Hybrid System. . . . . . . . . . 225 7.1.1 Advantages of Hybrid System . . . . . . . . . . . . . . . . . . . 225 7.1.2 Disadvantages of a Hybrid System . . . . . . . . . . . . . . . 226 Contents xi 7.2 Configuration of Hybrid Systems . . . . . . . . . . . . . . . . . . . . . . 226 7.2.1 Architecture of DC Bus . . . . . . . . . . . . . . . . . . . . . . . 226 7.2.2 Architecture of AC Bus . . . . . . . . . . . . . . . . . . . . . . . 226 7.2.3 Architecture of DC/AC Bus . . . . . . . . . . . . . . . . . . . . 228 7.2.4 Classifications of Hybrid Energy Systems . . . . . . . . . . 229 7.3 The Different Combinations of Hybrid Systems . . . . . . . . . . . . 230 7.3.1 Hybrid Photovoltaic/Diesel Generator Systems . . . . . . . 230 7.3.2 Hybrid Wind/Photovoltaic/Diesel Generator System . . . 232 7.3.3 Hybrid Wind/Photovoltaic System . . . . . . . . . . . . . . . . 243 7.3.4 Hybrid Photovoltaic/Wind//Hydro/Diesel System. . . . . . 254 7.3.5 Hybrid Photovoltaic-Fuel Cell System . . . . . . . . . . . . . 254 7.3.6 Hybrid Photovoltaic-Battery-Fuel Cell System . . . . . . . 256 7.3.7 Hybrid Photovoltaic-Electrolyser-Fuel Cell System . . . . 257 7.3.8 Hybrid Photovoltaic/Wind/Fuel Cell System . . . . . . . . . 273 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 |
Disponibilité (1)
Cote | Support | Localisation | Statut | Emplacement | |
---|---|---|---|---|---|
SI8/3110 | Livre | BIB.DEP.ARCHITECTURE | Empruntable | Magazin |
Documents numériques (1)
Consulter en ligne URL |
Erreur sur le template