Titre : | Contribution à la Commande Neuro-Floue de la Machine Asynchrone à Double Alimentation Utilisé dans un Système Eolien |
Auteurs : | abdelhak dida, Auteur ; Benattous Djilani, Directeur de thèse |
Type de document : | Monographie imprimée |
Editeur : | Biskra [Algerie] : Université Mohamed Kheider, 2017 |
Langues: | Français |
Mots-clés: | DFIG,WPGS,FOC,DPC,FLC,NFC,Multilevel converters. |
Résumé : |
This thesis deals with the analysis, modeling, and control of the doubly-fed induction generator (DFIG)
used in a wind power generation system (WPGS). A state review about the WPGS is discussed in order to give a historical overview and indicate our location in this area. Conventional vector control strategies for both rotor-side and grid-side converters of the DFIG-WPGS has been carried out. The standard Field Oriented Control (FOC) schemes usually used to control DFIGs comprise proportional-integral (PI)-controlled cascaded current and power loops, the system transient performance degrades when the actual values of the DFIG parameters deviate from those choose during the design the control system. In this framework, several alternative high dynamic performance power control schemes of DFIGs are being proposed in this thesis. Intelligent Fuzzy and Neuro-Fuzzy controllers (FLC, NFC) have been proposed as alternative of the PI control which is usually used in the machine power control, MPPT algorithms and the pitch angle control. In order to add robustness to our controllers, many data sets are collected with different PI controllers and different operating conditions. Operator experience plays an important role in the choice of the most adequate data sets and to find the most accurate scaling factors of the inputs and outputs signals of the fuzzy controllers. |
Sommaire : |
Abstract ………………………………………………………………………………………………….. I
Acknowledgments ………………………………………………………………………………………. II Dedication ……………………………………………………………………………………………….. III Table of Contents ………………………………………………………………………………………... IV List of Figures ……………………………………………………………………………………………. VII List of Tables ……………………….……………………………………………………………………. X List of Acronyms and Symbols ………………..………………………………………………………… XI General Introduction …………...……………………………………………………………..…….......... 01 Chapter 1: Wind Power Generation System: State of the Art 1.1. Introduction ………………………………………………………………….……………………… 14 1.2. Historical Facts about Wind Power …………………………………………………………….…… 14 1.3. Development of Wind Power Generation ……………………………………………...…………… 15 1.4. Components of Modern Wind Turbines ………………………….…………………………….…… 17 1.5. State-Of-The-Art of Currently Used Generator Systems …………………………………………… 18 1.5.1. Fixed Speed WTs Concept……………………………………………………..…………... 19 1.5.2. Variable Speed WTs Concept with Geared-Drive and Partial-Rated Power Converter….… 21 1.5.3. Variable Speed WTs Concept with Geared-Drive and Fully-Rated Power Converter….…. 22 1.5.4. Variable Speed WTs Concept with Direct-Driveand Fully-Rated Power Converter …….. 23 1.5.5. Conclusion on Currently Used Generator Systems ……………………..……………….… 24 1.6. Development Trends to Reduce the Weight and Volume of the WTS …….……………….….….. 25 1.6.1. Brushless DFIG (BDFIG) ………………………………………………….………….…… 25 1.6.2. Continuously Variable Hydrostatic Gearbox (CVHG) ………………………………..…... 27 1.6.3. Magnetic Gearbox (MG) …………………………………………………….………..….… 28 1.6.4. Continuously Variable Magnetic Gearbox (CVMG) ……………………………..…..….… 28 1.6.5. Magnetic Pseudo DD Generator (PDD) ……………………………………………..….… 29 1.6.6. High-Temperature Superconducting (HTS) generator-based system …………………….… 30 1.6.7. Transformer-Less WTGS using a Multilevel Con verter ……………………….……..…… 30 1.6.8. Multi-Coil Generator based Medium Voltage Converter ………………………………….. 31 1.6.9. Multiple Generators based Medium Voltage Converter ……………………………….….. 32 1.6.10. Medium-Frequency Magnetic Link-based MV Con verter ………………………………… 33 1.6.11. Matrix Converter based MV Converter …………………………………………………… 34 1.6.12. Medium-voltage DC converter ………………………………………………………..….. 35 1.6.13. Medium Frequency Transformer based System……………………………………….…. 35 1.7. Conclusion …………………………………………………………………………….…………….. 36 1.8. References of Chapter 1 …………………………………………………………………………….. 37 Chapter 2: Modeling and Control of the DFIG based WPGS 2.1. Introduction…………………………………………………………………...................................... 40 2.2. Modeling of the Global WPGS ………………………………………………………………….….. 40 2.2.1. Wind Speed Model………………………………………………………...………………... 42 2.2.2. Wind Turbine Model…………………………………………..…......………………....…… 43 • Blade Pitch Angle Model …………………………………………………………….….. 45 2.2.3. Two-Mass Drive Train Model ……………………………………………………………… 46 2.2.4. DFIG Model ………………………………………………………………………………… 2.2.5. Back-to-Back Power Electronic Converters Model ……………………………………….. 47 49 2.2.6. Grid-Interfaced Inductance Filter Model …………………………………………………... 50 Table of Contents V 2.2.7. DC-Link Capacitor Model ………………………………………………….……………… 51 2.3. Power flow in Wound-Rotor Induction Machine …………………………………………………… 52 2.4. Control Schemes of Grid Connected DFIG ……………….………………………………………… 54 3.4.1. DC-link Capacitor Charging using GSC Current Control ……………….…………......... 55 3.4.2. Generation of Electrical Power ……………………………………………………………. 56 2.5. Simulation Results …………………………………………………………………………….......... 59 2.6. Conclusion …………………………………………………………………………………….......... 63 2.7. References of Chapter 2 ……………………………………………………………………………. 64 Chapter 3: Power Maximization and Pitch Angle Control using Fuzzy and Neuro-Fuzzy Controllers 3.1. Introduction ……………………………………………………………………………..…….......... 67 3.2. Maximum Power Point Tracking Algorithms ……………………………………..……………….. 68 3.2.1. Optimal Torque Algorithm …………………………………………………………………. 69 • Simulation Results ……………….……………………...……………………………….. • Discussion ………………………………………………………….….…………………... 70 71 3.2.2. Power Signal Feedback Algorithm …………………………………………………………. 71 3.2.3. Optimum TSR Algorithm…………………………………………………………………… 72 A. TSR Algorithm using PI and FLC as Rotational Speed Controller ………………………. • Simulation Results ………………………………………………………………………… • Discussion …………………………………………………..…………………………….. 72 73 75 B. Sensorless TSR based MPPT Algorithm using a FLC ………………………………........ • Rotational Speed Estimation ………………………………………………………………. • Wind Speed Estimation ……………………………………………………………………. • Simulation Results ………………………………………………………………………… • Discussion …………………………………………………………………………………. 76 76 78 78 80 3.2.4. Maximum Power Curve Searching Algorithm……………………………….................... 81 • Simulation Results ………………………………………………………………………… • Discussion …………………………………………………………………………………. 84 86 3.2.5. Perturb and observe Algorithm using a FLC ……………………………………………… 86 • Simulation Results ………………………………………………………………………… • Discussion …………………………………………………………………………………. 89 91 3.3. Blade Pitch Angle Control ……………………………………………………………..…………… 91 3.3.1. Blade Pitch Angle Control using Neuro-Fuzzy Controllers ….…………………………… 91 • Simulation Results ……………….………………………………………….……………. • Discussion ………………………………………………………………………………… 92 93 3.3.2. Blade Pitch Control and MPPT Algorithm using ANFIS…….…………………………… 94 • Simulation Results ………………………………………………………………………… • Discussion ………………………………………………………………………………… 98 100 3.4. Conclusion …………………………………………………………………………………………. 101 3.5. References of Chapter 3 ……………………………………………………………………………. 102 Chapter 4: Direct Power Control of Grid-Connected Doubly-Fed Induction Machine, Review 4.1. Introduction …………………………………………………………………………………………. 104 4.2. Control Strategies of the DFIG ……………………………………………………………………… 104 4.2.1. Field Oriented Control law of the DFIG …………………………………………….……… 105 4.2.2. Direct Power Control Law of the DFIG ………………………………………….………… 106 4.2.3. Sliding Mode Control Law of the DFIG …………………………………………….……… 109 4.2.4. Fuzzy Logic Control Law of the DFIG …………………………………………………….. 111 4.3. Simulation Results ………………………………………………………………………………….. 112 4.3.1. The Normal Operating Conditions Test (Test N01) ………………………………………… 112 4.3.2. The Machine Parameter Variations Test (Test N02)………………………………….......... 113 4.3.3. The Faulty Grid Voltage Test (Test N 03) …………………………………………………… 113 Table of Contents VI • Discussion of Normal Operating Condition …………….………………………………. • Discussion of Machine Parameters Variation Conditio n ……………………….………. • Discussion of Grid Voltage Unbalance and Distortion Condition ………………........... 115 117 117 • Discussion of Switching Frequency …………………….……..………………………… 118 4.4. Further Decoupled Direct Power Control Laws of DFIG ………………………………………….. 119 4.4.1. Vector Control with RST or LQG Regulators ……………………………………………… 119 4.4.2. Nonlinear Input-Output Feedback Linearization control ………………………………….. 120 4.4.3. Second-Order Sliding-Mode Control……………………………………………………….. 120 4.4.4. Adaptive Back-stepping Control……………………………………………………………. 120 4.4.5. Model-Based Predictive Control……………………………………………………………. 120 4.4.6. Deadbeat Control …………………………………………………………………………… 121 4.4.7. Model Reference Adaptive Control ……………………………………………………….. 121 4.4.8. Robust H∞ Control ………………………………………………………………………… 121 4.4.9. Adaptive Neural Network control ………………………………………………………….. 121 4.4.10. Fuzzy Logic control ………………………………………………………………………. 122 4.4.11. Adaptive Neuro-fuzzy control …………………………………………………………….. 122 4.5. Conclusion ………………………………………………………………………………………….. 122 4.6. References of Chapter 4 ……………………………………………………………………………. 123 Chapter 5: Modeling and Control of Back-to-Back Multilevel Converters based DFIG using Neuro-Fuzzy Controllers 5.1. Introduction …………………………………………………………………………………………. 125 5.2. Multilevel converters …………………………………………………………………………….….. 125 5.3. Five-Level NPC Converter Model …………………………………………………………..……… 126 • Connection Functions …………………………………………………………………… • Complementary Control …………………………………………….…………………… 128 128 5.4. Modulation Strategy for Five-Level NPC Converter ….……………………………………………. 129 5.5. Comparison between 3L, 5L and 7L NPC Converter ………………………………………………. 131 5.6. DC-Bus Balancing using a Clamping Bridge Circuit in the 5L ……………………………………. 133 5.7. Fuzzy Gain Tuner of PI Controller …………………………………………………………………. 135 5.8. Adaptive Neuro-Fuzzy Inference System ………………………………………………………….. 136 • Input Node (Layer 1) ……………………………………………………………………. • Rule Nodes (Layer 2) ………………………………………………………………….… • Average Nodes (Layer 3)……………………………………………………………….. • Consequent Nodes (Layer 4) ………………………………………………………….… • Output Node (Layer 5) ………………………………………………………………….. 138 138 138 138 138 5.9. Training process of the NFCs of stator power and rotor currents ………………………..……….… 139 5.10. Simulation Results ………………………………………………………………….……………... 141 5.10.1. Normal Operation of the WPGS-DFIG …………………………………………………… 141 5.10.2. Robustness of the NFC against the Parameters Variations ………..……………………… 144 5.10.3. Robustness of the NFC against the Grid Disturbances ………….……………………….. 145 5.11. Conclusion ……………………………………………………………….………………………… 147 5.12. References of Chapter 5 ………………..……………………………………………………….… 148 General Conclusion and Suggestions ……………..….………………..……………………...….……. 150 Appendices…..…………………………………………………………………………………………… 152 Vita ………………………………………………………………………………………………………. 162 |
Disponibilité (1)
Cote | Support | Localisation | Statut | Emplacement | |
---|---|---|---|---|---|
TH/0795 | Thèse de doctorat | BIB.FAC.ST. | Empruntable | Magazin |
Erreur sur le template