Titre : | Conception d’un transistor bipolaire à base de Si/SiGe par SILVACO |
Auteurs : | KHADIR Abdelkader, Auteur ; Sengouga Nouredine, Directeur de thèse |
Type de document : | Monographie imprimée |
Editeur : | Biskra [Algerie] : Université Mohamed Kheider, 2019 |
Langues: | Anglais |
Mots-clés: | SiGe TBH,gain de courant,fréquence de coupure,fréquence d’oscillation maximale,SILVACO. |
Résumé : |
Ce travail présente une simulation numérique des effets des largeurs d'émetteur et du collecteur sur
les performances d'un transistor bipolaire basé sur une hétérojonction entre le silicium et le silicium-germanium (Si / SiGe HBT). Premièrement, les caractéristiques de courant continu et de transfert courant-tension ont été évaluées. Deuxièmement, les facteurs de mérite HBT telles que le gain de courant |
Sommaire : |
Table of contents
Aknowledgment i Dedication ii Abstract iii Résumé iv ملخص v Table of contents vi List of figures x List of tables xii List of acronyms xiii List of symbols xiv Introduction 1 Chapter I : Silicon bipolar and silicon-germanium hetero-junction bipolar transistors principles I.1 Introduction 5 I.2 Elemental semiconductors: silicon and germanium 5 I.2.1 Crystal structure 6 I.2.2 Band structure 7 I.3 PN junction 8 I.4 Bipolar junction transistor 10 I.4.1 Base current 11 I.4.2 Collector current 13 I.4.3 Current gain 14 I.5 Silicon-Germanium Heterojunction Bipolar Transistors. 14 I.5.1 Current gain 15 I.5.2 The transit time 16 I.5.3 Cut-off frequency fT 16 I.5.4 Maximum oscillation frequency fMAX 18 I.5.5 Base, collector and emitter resistance 18 I.5.5.1 Base Resistance 19 I.5.5.2 Collector Resistance 20 I.5.6 Emitter/base and collector/base depletion capacitance 21 I.6 Strain, dislocations and critical thickness 21 References Chapter II: Si and SiGe Physical models II.1 Introduction 27 II.2 The energy balance model 27 II.3 SiGe material characteristics 30 II.3.1 Bandgap 31 II.3.2 Electron Affinity 31 II.3.3 Density of States 31 II.3.4 Dielectric Function 31 II.3.5 Low Field Mobility 31 II.3.6 Velocity Saturation 32 II.4 Si and SiGe physical models 32 II.4.1 Band-gap narrowing 32 II.4.2 Shockley-Read-Hall (SRH) Recombination 33 II.4.2.1 SRH Concentration-Dependent Lifetime Model 34 II.4.3 Field dependent mobility 35 II.4.4 Low Field Mobility Models 35 II.4.4.1 Parallel Electric Field-Dependent Mobility Models 36 II.4.4.2 Concentration-Dependent Low-Field Mobility 37 II.4.5 Statistics of Fermi-Dirac 38 II.4.6 Auger Recombination 39 II.4.6.1 Standard Auger Model 39 References 40 Chapter III: SILVACO Atlas T-CAD Device Simulator III.1 Introduction 43 III.2 Simulation history 43 III.3 ATLAS device simulator 43 III.3.1 Operation of ATLAS 44 III.4 ATLAS Commands organization 44 III.4.1 Structure Specification 45 III.4.1.1 Mesh 45 III.4.1.2 Region 47 III.4.1.3 Electrodes 47 III.4.1.4 Doping III.4.2 Materials Model Specification 48 III.4.2.1 Specifying Material Properties 48 III.4.2.1.1 Semiconductor, Insulator, or Conductor 48 III.4.2.1.2 Setting Parameters 49 III.4.2.2 Specifying Physical Models 49 III.4.2.2.1 Using the C-Interpreter to Specify Models 49 III.4.2.3 Contact Characteristics 49 III.4.2.3.1 Workfunction for Gates or Schottky Contacts 50 III.4.2.3.2 Shorting Two Contacts Together 50 III.4.3 Numerical Methods 50 III.4.3.1 Numerical Solution Techniques 50 III.4.3.2 Basic Drift Diffusion Calculations 51 III.4.3.3 Energy Balance Calculations 51 III.4.4 Solution Specification 51 III.4.4.1 DC Solutions 51 III.4.4.1.1 Sweeping the Bias 52 III.4.4.1.2 Initial Guess Importance 52 III.4.4.1.3 The Initial Solution 52 III.4.4.1.4 The First and Second Non-Zero Bias Solutions 52 III.4.4.1.5 The Trap Parameter 53 III.4.4.2 Small-Signal AC Solutions 53 III.4.4.2.1 Ramped Frequency at a Single Bias 53 III.4.4.3 Run-Time Output 53 III.4.4.4 Log Files 55 III.5 Results analysis 56 III.5.1 Parameter Extraction in DeckBuild 56 III.5.2 Solution Files (tonyplot) 56 References 58 Chapter IV: Results And Discussions IV.1 Introduction 59 IV.2 Effect of emitter and intrinsic collector widths on SiGe HBT performance 59 IV.2.1 Device structure 60 IV.2.2 Effect of emitter and intrinsic collector widths on the current gain 61 IV.2.3 Effect of emitter and intrinsic collector widths on the gummel Plots 63 IV.2.4 Effect of emitter and intrinsic collector widths on the cut-off frequency and the maximum oscillation frequency 64 IV.2.5 Effect of emitter and intrinsic collector widths on the forward transit time 67 IV.3 Effect of germanium trapezoidal profile shapes on SiGe HBT Performance 68 IV.3.1 Device structure 68 IV.3.2 Effect of germanium trapezoidal profile shapes on the DC current Gain 68 IV.3.3 Effect of germanium profile shapes on the gummel plots 70 IV.3.4 Effect of germanium profile shapes on the cut-off frequency and the maximum oscillation frequency 70 IV.4 Effect of base doping on SiGe HBT performance 72 IV.4.1 Device structure 72 IV.4.2 Effect of base doping on current gain 72 IV.4.3 Effect of base doping on gummel plots 73 IV.4.4 Base doping effect on cut-off frequency and maximum oscillation Frequencies 74 IV.4.5 Base doping effect on the forward transit time 75 IV.5 Conclusion 76 References 77 Conclusions |
Disponibilité (1)
Cote | Support | Localisation | Statut | Emplacement | |
---|---|---|---|---|---|
TH/0951 | Livre | BIB.FAC.ST. | Empruntable |
Erreur sur le template